Measures of Fermi surfaces and absence of singular continuous spectrum for magnetic Schrödinger operators

نویسنده

  • Michael J. Gruber
چکیده

Fermi surfaces are basic objects in solid state physics and in the spectral theory of periodic operators. We define several measures connected to Fermi surfaces and study their measure theoretic properties. From this we get absence of singular continuous spectrum and of singular continuous components in the density of states for symmetric periodic elliptic differential operators acting on vector bundles. This includes Schrödinger operators with periodic magnetic field and rational flux, as well as the corresponding Pauli and Dirac-type operators.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Measures of Fermi Surfaces and Absence of Singular Continuous Spectrum for Magnetic Schrr Odinger Operators

Fermi surfaces are basic objects in solid state physics and in the spectral theory of periodic operators. We deene several measures connected to Fermi surfaces and study their measure theoretic properties. From this we get absence of singular continuous spectrum and of singular continuous components in the density of states for symmetric periodic elliptic diierential operators acting on vector ...

متن کامل

Half-line Schrödinger Operators with No Bound States

We consider Schödinger operators on the half-line, both discrete and continuous, and show that the absence of bound states implies the absence of embedded singular spectrum. More precisely, in the discrete case we prove that if ∆+V has no spectrum outside of the interval [−2, 2], then it has purely absolutely continuous spectrum. In the continuum case we show that if both −∆+V and −∆−V have no ...

متن کامل

Lyapunov Exponents and Spectral Analysis of Ergodic Schrödinger Operators: a Survey of Kotani Theory and Its Applications

The absolutely continuous spectrum of an ergodic family of onedimensional Schrödinger operators is completely determined by the Lyapunov exponent as shown by Ishii, Kotani and Pastur. Moreover, the part of the theory developed by Kotani gives powerful tools for proving the absence of absolutely continuous spectrum, the presence of absolutely continuous spectrum, and even the presence of purely ...

متن کامل

Uniform Cantor Singular Continuous Spectrum for Nonprimitive Schrödinger Operators

It is shown that some Schrödinger operators, with nonprimitive substitution potentials, have pure singular continuous Cantor spectrum with null Lebesgue measure for all elements in the respective hulls.

متن کامل

Operators with Singular Continuous Spectrum: Iii. Almost Periodic Schrödinger Operators

We prove that one-dimensional Schrödinger operators with even almost periodic potential have no point spectrum for a dense Gδ in the hull. This implies purely singular continuous spectrum for the almost Mathieu equation for coupling larger than 2 and a dense Gδ in θ even if the frequency is an irrational with good Diophantine properties. §

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008